Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Applied Unsupervised Learning with Python

You're reading from   Applied Unsupervised Learning with Python Discover hidden patterns and relationships in unstructured data with Python

Arrow left icon
Product type Paperback
Published in May 2019
Publisher
ISBN-13 9781789952292
Length 482 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Benjamin Johnston Benjamin Johnston
Author Profile Icon Benjamin Johnston
Benjamin Johnston
Christopher Kruger Christopher Kruger
Author Profile Icon Christopher Kruger
Christopher Kruger
Aaron Jones Aaron Jones
Author Profile Icon Aaron Jones
Aaron Jones
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Applied Unsupervised Learning with Python
Preface
1. Introduction to Clustering FREE CHAPTER 2. Hierarchical Clustering 3. Neighborhood Approaches and DBSCAN 4. Dimension Reduction and PCA 5. Autoencoders 6. t-Distributed Stochastic Neighbor Embedding (t-SNE) 7. Topic Modeling 8. Market Basket Analysis 9. Hotspot Analysis Appendix

Summary


In this chapter, we discussed how hierarchical clustering works and where it may be best employed. In particular, we discussed various aspects of how clusters can be subjectively chosen through the evaluation of a dendrogram plot. This is a huge advantage compared to k-means clustering if you have absolutely no idea of what you're looking for in the data. Two key parameters that drive the success of hierarchical clustering were also discussed: the agglomerative versus divisive approach and linkage criteria. Agglomerative clustering takes a bottom-up approach by recursively grouping nearby data together until it results in one large cluster. Divisive clustering takes a top-down approach by starting with the one large cluster and recursively breaking it down until each data point falls into its own cluster. Divisive clustering has the potential to be more accurate since it has a complete view of the data from the start; however, it adds a layer of complexity that can decrease the stability...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image