Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Applied Unsupervised Learning with Python

You're reading from   Applied Unsupervised Learning with Python Discover hidden patterns and relationships in unstructured data with Python

Arrow left icon
Product type Paperback
Published in May 2019
Publisher
ISBN-13 9781789952292
Length 482 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Benjamin Johnston Benjamin Johnston
Author Profile Icon Benjamin Johnston
Benjamin Johnston
Christopher Kruger Christopher Kruger
Author Profile Icon Christopher Kruger
Christopher Kruger
Aaron Jones Aaron Jones
Author Profile Icon Aaron Jones
Aaron Jones
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Applied Unsupervised Learning with Python
Preface
1. Introduction to Clustering 2. Hierarchical Clustering FREE CHAPTER 3. Neighborhood Approaches and DBSCAN 4. Dimension Reduction and PCA 5. Autoencoders 6. t-Distributed Stochastic Neighbor Embedding (t-SNE) 7. Topic Modeling 8. Market Basket Analysis 9. Hotspot Analysis Appendix

k-means versus Hierarchical Clustering


Now that we have expanded our understanding of how k-means clustering works, it is important to explore where hierarchical clustering fits into the picture. As mentioned in the linkage criteria section, there is some potential direct overlap when it comes to grouping data points together using centroids. Universal to all of the approaches mentioned so far, is also the use of a distance function to determine similarity. Due to our in-depth exploration in the previous chapter, we have kept using the Euclidean distance, but we understand that any distance function can be used to determine similarity.

In practice, here are some quick highlights for choosing one clustering method over another:

  • Hierarchical clustering benefits from not needing to pass in an explicit "k" number of clusters apriori. This means that you can find all the potential clusters and decide which clusters make the most sense after the algorithm has completed.

  • k-means clustering benefits...

You have been reading a chapter from
Applied Unsupervised Learning with Python
Published in: May 2019
Publisher:
ISBN-13: 9781789952292
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime