Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Advanced Natural Language Processing with TensorFlow 2

You're reading from   Advanced Natural Language Processing with TensorFlow 2 Build effective real-world NLP applications using NER, RNNs, seq2seq models, Transformers, and more

Arrow left icon
Product type Paperback
Published in Feb 2021
Publisher Packt
ISBN-13 9781800200937
Length 380 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Tony Mullen Tony Mullen
Author Profile Icon Tony Mullen
Tony Mullen
Ashish Bansal Ashish Bansal
Author Profile Icon Ashish Bansal
Ashish Bansal
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Essentials of NLP 2. Understanding Sentiment in Natural Language with BiLSTMs FREE CHAPTER 3. Named Entity Recognition (NER) with BiLSTMs, CRFs, and Viterbi Decoding 4. Transfer Learning with BERT 5. Generating Text with RNNs and GPT-2 6. Text Summarization with Seq2seq Attention and Transformer Networks 7. Multi-Modal Networks and Image Captioning with ResNets and Transformer Networks 8. Weakly Supervised Learning for Classification with Snorkel 9. Building Conversational AI Applications with Deep Learning 10. Installation and Setup Instructions for Code 11. Other Books You May Enjoy
12. Index

Summary

It is apparent that deep models perform very well when they have a lot of data. BERT and GPT models have shown the value of pre-training on massive amounts of data. It is still very hard to get good-quality labeled data for use in pretraining or fine-tuning. We used the concepts of weak supervision combined with generative models to cheaply label data. With relatively small amounts of effort, we were able to multiply the amount of training data by 18x. Even though the additional training data was noisy, the BiLSTM model was able to learn effectively and beat the baseline model by 0.6%.

Representation learning or pre-training leads to transfer learning and fine-tuning models performing well on their downstream tasks. However, in many domains like medicine, the amount of labeled data may be small or quite expensive to acquire. Using the techniques learned in this chapter, the amount of training data can be expanded rapidly with little effort. Building a state-of...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image