Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Advanced Deep Learning with R

You're reading from   Advanced Deep Learning with R Become an expert at designing, building, and improving advanced neural network models using R

Arrow left icon
Product type Paperback
Published in Dec 2019
Publisher Packt
ISBN-13 9781789538779
Length 352 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Bharatendra Rai Bharatendra Rai
Author Profile Icon Bharatendra Rai
Bharatendra Rai
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Revisiting Deep Learning Basics FREE CHAPTER
2. Revisiting Deep Learning Architecture and Techniques 3. Section 2: Deep Learning for Prediction and Classification
4. Deep Neural Networks for Multi-Class Classification 5. Deep Neural Networks for Regression 6. Section 3: Deep Learning for Computer Vision
7. Image Classification and Recognition 8. Image Classification Using Convolutional Neural Networks 9. Applying Autoencoder Neural Networks Using Keras 10. Image Classification for Small Data Using Transfer Learning 11. Creating New Images Using Generative Adversarial Networks 12. Section 4: Deep Learning for Natural Language Processing
13. Deep Networks for Text Classification 14. Text Classification Using Recurrent Neural Networks 15. Text classification Using Long Short-Term Memory Network 16. Text Classification Using Convolutional Recurrent Neural Networks 17. Section 5: The Road Ahead
18. Tips, Tricks, and the Road Ahead 19. Other Books You May Enjoy

To get the most out of this book

The following are a few ideas for how you can get the most out of this book:

All examples in this book use R codes. So before getting started with it, you should havea good foundation in the R language. As per Confucius, "I hear and I forget. I see and I remember. I do and I understand." This is true for this book, too. A hands-on approach of working with the codes while going through the chapters will be very useful in understanding the deep learning models.

All the codes in this book were successfully run on a Mac computer that had 8 GB of RAM. However, if you are working with a much larger dataset compared to what has been used in this book for illustration purposes, more powerful computing resources may be required in order to develop deep learning models. It will also be helpful to have a good foundation in statistical methods.

Download the example code files

You can download the example code files for this book from your account at www.packt.com. If you purchased this book elsewhere, you can visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

  1. Log in or register at www.packt.com.
  2. Select the Support tab.
  3. Click on Code Downloads.
  4. Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

  • WinRAR/7-Zip for Windows
  • Zipeg/iZip/UnRarX for Mac
  • 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Advanced-Deep-Learning-with-R. In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "We store the accuracy and loss values while fitting the model in model_three."

A block of code is set as follows:

model %>% 
compile(loss = 'binary_crossentropy',
optimizer = 'adam',
metrics = 'accuracy')

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "Recurrent neural networks (RNNs) are well suited to working with data involving such sequences."

Warnings or important notes appear like this.
Tips and tricks appear like this.
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image