Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
50 Algorithms Every Programmer Should Know

You're reading from   50 Algorithms Every Programmer Should Know Tackle computer science challenges with classic to modern algorithms in machine learning, software design, data systems, and cryptography

Arrow left icon
Product type Paperback
Published in Sep 2023
Publisher Packt
ISBN-13 9781803247762
Length 538 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Imran Ahmad Imran Ahmad
Author Profile Icon Imran Ahmad
Imran Ahmad
Arrow right icon
View More author details
Toc

Table of Contents (22) Chapters Close

Preface 1. Section 1: Fundamentals and Core Algorithms
2. Overview of Algorithms FREE CHAPTER 3. Data Structures Used in Algorithms 4. Sorting and Searching Algorithms 5. Designing Algorithms 6. Graph Algorithms 7. Section 2: Machine Learning Algorithms
8. Unsupervised Machine Learning Algorithms 9. Traditional Supervised Learning Algorithms 10. Neural Network Algorithms 11. Algorithms for Natural Language Processing 12. Understanding Sequential Models 13. Advanced Sequential Modeling Algorithms 14. Section 3: Advanced Topics
15. Recommendation Engines 16. Algorithmic Strategies for Data Handling 17. Cryptography 18. Large-Scale Algorithms 19. Practical Considerations 20. Other Books You May Enjoy
21. Index

Understanding supervised machine learning

Machine learning focuses on using data-driven approaches to create autonomous systems that can help us to make decisions with or without human supervision. In order to create these autonomous systems, machine learning uses a group of algorithms and methodologies to discover and formulate repeatable patterns in data. One of the most popular and powerful methodologies used in machine learning is the supervised machine learning approach. In supervised machine learning, an algorithm is given a set of inputs, called features, and their corresponding outputs, called labels. These features often comprise structured data like user profiles, historical sales figures, or sensor measurements, while the labels usually represent specific outcomes we want to predict, such as customer purchasing habits or product quality ratings. Using a given dataset, a supervised machine learning algorithm is used to train a model that captures the complex relationship between the features and labels represented by a mathematical formula. This trained model is the basic vehicle that is used for predictions.

The ability to learn from existing data in supervised learning is similar to the ability of the human brain to learn from experience. This learning ability in supervised learning uses one of the attributes of the human brain and is a fundamental way of opening the gates to bring decision-making power and intelligence to machines.

Let’s consider an example where we want to use supervised machine learning techniques to train a model that can categorize a set of emails into legitimate ones (called legit) and unwanted ones (called spam). In order to get started, we need examples from the past so that the machine can learn what sort of content of emails should be classified as spam.

This content-based learning task using text data is a complex process and is achieved through one of the supervised machine learning algorithms. Some examples of supervised machine learning algorithms that can be used to train the model in this example include decision trees and Naive Bayes classifiers, which we will discuss later in this chapter.

For now, we will focus on how we can formulate supervised machine learning problems.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image