Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
3D Deep Learning with Python

You're reading from   3D Deep Learning with Python Design and develop your computer vision model with 3D data using PyTorch3D and more

Arrow left icon
Product type Paperback
Published in Oct 2022
Publisher Packt
ISBN-13 9781803247823
Length 236 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (4):
Arrow left icon
Xudong Ma Xudong Ma
Author Profile Icon Xudong Ma
Xudong Ma
Vishakh Hegde Vishakh Hegde
Author Profile Icon Vishakh Hegde
Vishakh Hegde
Lilit Yolyan Lilit Yolyan
Author Profile Icon Lilit Yolyan
Lilit Yolyan
David Farrugia David Farrugia
Author Profile Icon David Farrugia
David Farrugia
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. PART 1: 3D Data Processing Basics
2. Chapter 1: Introducing 3D Data Processing FREE CHAPTER 3. Chapter 2: Introducing 3D Computer Vision and Geometry 4. PART 2: 3D Deep Learning Using PyTorch3D
5. Chapter 3: Fitting Deformable Mesh Models to Raw Point Clouds 6. Chapter 4: Learning Object Pose Detection and Tracking by Differentiable Rendering 7. Chapter 5: Understanding Differentiable Volumetric Rendering 8. Chapter 6: Exploring Neural Radiance Fields (NeRF) 9. PART 3: State-of-the-art 3D Deep Learning Using PyTorch3D
10. Chapter 7: Exploring Controllable Neural Feature Fields 11. Chapter 8: Modeling the Human Body in 3D 12. Chapter 9: Performing End-to-End View Synthesis with SynSin 13. Chapter 10: Mesh R-CNN 14. Index 15. Other Books You May Enjoy

Summary

In this chapter, we talked about an approach to fitting deformable mesh models to a point cloud. As we have discussed, obtaining meshes from point clouds is usually a standard step in many 3D computer vision pipelines. The fitting approach in this chapter can be used as a simple baseline approach in practice.

From this deformable mesh fitting approach, we learned how to use PyTorch optimization. We also learned about many loss functions and their PyTorch3D implementations, including Chamfer distances, mesh edge loss, mesh Laplacian smoothing loss, and mesh normal consistency loss.

We learned when these loss functions should be used and for what purposes. We saw several experiments for showing how the loss functions affect the final outcome. You are also encouraged to run your own experiments with different combinations of loss functions and weights.

In the next chapter, we will discuss a very exciting 3D deep learning technique called differentiable rendering. Actually...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime