In today's world, distributed systems are everywhere. Ranging from the websites we browse to the apps that we use on our phones, hardly a day passes when we do not use distributed systems. Given this omnipresent nature, it is an obvious choice to adapt this paradigm for building machine learning systems. A typical pattern in building distributed systems is to perform resource-intensive (and data-sensitive) computations on backend servers whilst pushing lighter (and comparatively independent) compute tasks to the user's device. A large subset of machine learning applications falls into the resource-intensive category. Furthermore, machine learning models are built using data. In a significant fraction of real-world cases, the data used to do so is subject to privacy and security concerns. This further advances the case for implementing machine...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine