Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Machine Learning Solutions Architect Handbook

You're reading from   The Machine Learning Solutions Architect Handbook Create machine learning platforms to run solutions in an enterprise setting

Arrow left icon
Product type Paperback
Published in Jan 2022
Publisher Packt
ISBN-13 9781801072168
Length 442 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
David Ping David Ping
Author Profile Icon David Ping
David Ping
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: Solving Business Challenges with Machine Learning Solution Architecture
2. Chapter 1: Machine Learning and Machine Learning Solutions Architecture FREE CHAPTER 3. Chapter 2: Business Use Cases for Machine Learning 4. Section 2: The Science, Tools, and Infrastructure Platform for Machine Learning
5. Chapter 3: Machine Learning Algorithms 6. Chapter 4: Data Management for Machine Learning 7. Chapter 5: Open Source Machine Learning Libraries 8. Chapter 6: Kubernetes Container Orchestration Infrastructure Management 9. Section 3: Technical Architecture Design and Regulatory Considerations for Enterprise ML Platforms
10. Chapter 7: Open Source Machine Learning Platforms 11. Chapter 8: Building a Data Science Environment Using AWS ML Services 12. Chapter 9: Building an Enterprise ML Architecture with AWS ML Services 13. Chapter 10: Advanced ML Engineering 14. Chapter 11: ML Governance, Bias, Explainability, and Privacy 15. Chapter 12: Building ML Solutions with AWS AI Services 16. Other Books You May Enjoy

Hands-on exercise – building and training a PyTorch model

In this hands-on exercise, you will learn how to install the PyTorch library in your local machine and train a simple deep learning model using PyTorch. Launch a Jupyter notebook that you have previously installed on your machine. If you don't remember how to do this, visit the Hands-on lab section of Chapter 3, Machine Learning Algorithms. Now, let's get started:

  1. Create a new folder called pytorch-lab in your Jupyter notebook environment and create a new notebook file called pytorch-lab1.ipynb. Run the following command in a cell to install PyTorch and the torchvision package. torchvision contains a set of computer vision models and datasets. We will use the pre-built MNIST dataset in the torchvision package for this exercise:
    !pip3 install torch
    !pip3 install torchvision
  2. The following sample code shows the previously mentioned main components. Be sure to run each code block in a separate Jupyter...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime