Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Simulation for Data Science with R

You're reading from   Simulation for Data Science with R Effective Data-driven Decision Making

Arrow left icon
Product type Paperback
Published in Jun 2016
Publisher Packt
ISBN-13 9781785881169
Length 398 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Matthias Templ Matthias Templ
Author Profile Icon Matthias Templ
Matthias Templ
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introduction 2. R and High-Performance Computing FREE CHAPTER 3. The Discrepancy between Pencil-Driven Theory and Data-Driven Computational Solutions 4. Simulation of Random Numbers 5. Monte Carlo Methods for Optimization Problems 6. Probability Theory Shown by Simulation 7. Resampling Methods 8. Applications of Resampling Methods and Monte Carlo Tests 9. The EM Algorithm 10. Simulation with Complex Data 11. System Dynamics and Agent-Based Models Index

Proper variance estimation with missing values


Very often in practice, missing values are a major problem. Standard routines for estimation are typically not designed to deal with missing values. In the following we discuss a method to adequately deal with missing values when estimating the variance/uncertainty of an estimator.

Because of non-answered questions or measurement errors, data often has the following data structure:

Here we see n observations and p variables and some missing values (NA).

Often one will omit those observations that include missing values from the data set. However, this decreases the sample size and thus increases the variance of estimators, and in addition this may cause biased estimates if missing values are missing at random, that is; if the probability of missingness depends on covariates.

To work around this problem, another, better solution is to impute missing values. For some applications the imputations are done in a way to minimize a prediction error. For...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime