Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Simplifying Data Engineering and Analytics with Delta

You're reading from   Simplifying Data Engineering and Analytics with Delta Create analytics-ready data that fuels artificial intelligence and business intelligence

Arrow left icon
Product type Paperback
Published in Jul 2022
Publisher Packt
ISBN-13 9781801814867
Length 334 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Anindita Mahapatra Anindita Mahapatra
Author Profile Icon Anindita Mahapatra
Anindita Mahapatra
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1 – Introduction to Delta Lake and Data Engineering Principles
2. Chapter 1: Introduction to Data Engineering FREE CHAPTER 3. Chapter 2: Data Modeling and ETL 4. Chapter 3: Delta – The Foundation Block for Big Data 5. Section 2 – End-to-End Process of Building Delta Pipelines
6. Chapter 4: Unifying Batch and Streaming with Delta 7. Chapter 5: Data Consolidation in Delta Lake 8. Chapter 6: Solving Common Data Pattern Scenarios with Delta 9. Chapter 7: Delta for Data Warehouse Use Cases 10. Chapter 8: Handling Atypical Data Scenarios with Delta 11. Chapter 9: Delta for Reproducible Machine Learning Pipelines 12. Chapter 10: Delta for Data Products and Services 13. Section 3 – Operationalizing and Productionalizing Delta Pipelines
14. Chapter 11: Operationalizing Data and ML Pipelines 15. Chapter 12: Optimizing Cost and Performance with Delta 16. Chapter 13: Managing Your Data Journey 17. Other Books You May Enjoy

Capacity planning

Data volumes are constantly growing. Capacity planning is the art and science of arriving at the right infrastructure that caters to the current and future needs of a business. It has several inputs, including the incoming data volume, the volume of historical data that needs to be retained, the SLAs for end-to-end latency, and the kind of processing and transformations that are done on the data. It is directly linked to your ability to sustain scalable growth at a manageable cost point. We may be tempted to think that leveraging the elasticity properties of cloud infrastructure absolves us from planning around capacity, which is in correct!

So, how do you go about forecasting demand? The simplest way is to use a sliver of data, establish a pilot workstream, take the memory, compute and storage metrics and project it out for the full workload, adding in some buffer for growth and then repeating it for every known use case, while keeping a buffer for unplanned activity...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime