Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Raspberry Pi Computer Vision Programming

You're reading from   Raspberry Pi Computer Vision Programming Design and implement computer vision applications with Raspberry Pi, OpenCV, and Python 3

Arrow left icon
Product type Paperback
Published in Jun 2020
Publisher Packt
ISBN-13 9781800207219
Length 306 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ashwin Pajankar Ashwin Pajankar
Author Profile Icon Ashwin Pajankar
Ashwin Pajankar
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Chapter 1: Introduction to Computer Vision and the Raspberry Pi 2. Chapter 2: Preparing the Raspberry Pi for Computer Vision FREE CHAPTER 3. Chapter 3: Introduction to Python Programming 4. Chapter 4: Getting Started with Computer Vision 5. Chapter 5: Basics of Image Processing 6. Chapter 6: Colorspaces, Transformations, and Thresholding 7. Chapter 7: Let's Make Some Noise 8. Chapter 8: High-Pass Filters and Feature Detection 9. Chapter 9: Image Restoration, Segmentation, and Depth Maps 10. Chapter 10: Histograms, Contours, and Morphological Transformations 11. Chapter 11: Real-Life Applications of Computer Vision 12. Chapter 12: Working with Mahotas and Jupyter 13. Chapter 13: Appendix 14. Other Books You May Enjoy

Working with images using OpenCV

In this section, we will learn to read and store images using the OpenCV API and Python. All the programs in this book will use the OpenCV library. It can be imported with the following Python 3 statement:

import cv2

The cv2.imread() function reads an image from the disk and stores it in a NumPy ndarray. It accepts two arguments. The first argument is the name of the image file on the disk. The image should either be in the same directory where we are saving the current Python 3 script, or we must pass the absolute path of the image file as an argument to the cv2.imread() function.

The second argument is a flag that specifies the mode in which the image should be read. The flag can have one of the following values:

  • cv2.IMREAD_GRAYSCALE: This reads an image from the disk in grayscale mode. The numerical value corresponding to this flag is 0.
  • cv2.IMREAD_UNCHANGED: This reads an image from the disk as it is. The numerical value corresponding...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime