Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Machine Learning

You're reading from   Python Machine Learning Learn how to build powerful Python machine learning algorithms to generate useful data insights with this data analysis tutorial

Arrow left icon
Product type Paperback
Published in Sep 2015
Publisher Packt
ISBN-13 9781783555130
Length 454 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Sebastian Raschka Sebastian Raschka
Author Profile Icon Sebastian Raschka
Sebastian Raschka
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Giving Computers the Ability to Learn from Data 2. Training Machine Learning Algorithms for Classification FREE CHAPTER 3. A Tour of Machine Learning Classifiers Using Scikit-learn 4. Building Good Training Sets – Data Preprocessing 5. Compressing Data via Dimensionality Reduction 6. Learning Best Practices for Model Evaluation and Hyperparameter Tuning 7. Combining Different Models for Ensemble Learning 8. Applying Machine Learning to Sentiment Analysis 9. Embedding a Machine Learning Model into a Web Application 10. Predicting Continuous Target Variables with Regression Analysis 11. Working with Unlabeled Data – Clustering Analysis 12. Training Artificial Neural Networks for Image Recognition 13. Parallelizing Neural Network Training with Theano Index

A roadmap for building machine learning systems

In the previous sections, we discussed the basic concepts of machine learning and the three different types of learning. In this section, we will discuss other important parts of a machine learning system accompanying the learning algorithm. The diagram below shows a typical workflow diagram for using machine learning in predictive modeling, which we will discuss in the following subsections:

A roadmap for building machine learning systems

Preprocessing – getting data into shape

Raw data rarely comes in the form and shape that is necessary for the optimal performance of a learning algorithm. Thus, the preprocessing of the data is one of the most crucial steps in any machine learning application. If we take the Iris flower dataset from the previous section as an example, we could think of the raw data as a series of flower images from which we want to extract meaningful features. Useful features could be the color, the hue, the intensity of the flowers, the height, and the flower lengths and widths. Many machine learning algorithms also require that the selected features are on the same scale for optimal performance, which is often achieved by transforming the features in the range [0, 1] or a standard normal distribution with zero mean and unit variance, as we will see in the later chapters.

Some of the selected features may be highly correlated and therefore redundant to a certain degree. In those cases, dimensionality reduction techniques are useful for compressing the features onto a lower dimensional subspace. Reducing the dimensionality of our feature space has the advantage that less storage space is required, and the learning algorithm can run much faster.

To determine whether our machine learning algorithm not only performs well on the training set but also generalizes well to new data, we also want to randomly divide the dataset into a separate training and test set. We use the training set to train and optimize our machine learning model, while we keep the test set until the very end to evaluate the final model.

Training and selecting a predictive model

As we will see in later chapters, many different machine learning algorithms have been developed to solve different problem tasks. An important point that can be summarized from David Wolpert's famous No Free Lunch Theorems is that we can't get learning "for free" (The Lack of A Priori Distinctions Between Learning Algorithms, D.H. Wolpert 1996; No Free Lunch Theorems for Optimization, D.H. Wolpert and W.G. Macready, 1997). Intuitively, we can relate this concept to the popular saying, "I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail" (Abraham Maslow, 1966). For example, each classification algorithm has its inherent biases, and no single classification model enjoys superiority if we don't make any assumptions about the task. In practice, it is therefore essential to compare at least a handful of different algorithms in order to train and select the best performing model. But before we can compare different models, we first have to decide upon a metric to measure performance. One commonly used metric is classification accuracy, which is defined as the proportion of correctly classified instances.

One legitimate question to ask is: how do we know which model performs well on the final test dataset and real-world data if we don't use this test set for the model selection but keep it for the final model evaluation? In order to address the issue embedded in this question, different cross-validation techniques can be used where the training dataset is further divided into training and validation subsets in order to estimate the generalization performance of the model. Finally, we also cannot expect that the default parameters of the different learning algorithms provided by software libraries are optimal for our specific problem task. Therefore, we will make frequent use of hyperparameter optimization techniques that help us to fine-tune the performance of our model in later chapters. Intuitively, we can think of those hyperparameters as parameters that are not learned from the data but represent the knobs of a model that we can turn to improve its performance, which will become much clearer in later chapters when we see actual examples.

Evaluating models and predicting unseen data instances

After we have selected a model that has been fitted on the training dataset, we can use the test dataset to estimate how well it performs on this unseen data to estimate the generalization error. If we are satisfied with its performance, we can now use this model to predict new, future data. It is important to note that the parameters for the previously mentioned procedures—such as feature scaling and dimensionality reduction—are solely obtained from the training dataset, and the same parameters are later re-applied to transform the test dataset, as well as any new data samples—the performance measured on the test data may be overoptimistic otherwise.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime