Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Data Analysis, Second Edition

You're reading from   Python Data Analysis, Second Edition Data manipulation and complex data analysis with Python

Arrow left icon
Product type Paperback
Published in Mar 2017
Publisher Packt
ISBN-13 9781787127487
Length 330 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Getting Started with Python Libraries FREE CHAPTER 2. NumPy Arrays 3. The Pandas Primer 4. Statistics and Linear Algebra 5. Retrieving, Processing, and Storing Data 6. Data Visualization 7. Signal Processing and Time Series 8. Working with Databases 9. Analyzing Textual Data and Social Media 10. Predictive Analytics and Machine Learning 11. Environments Outside the Python Ecosystem and Cloud Computing 12. Performance Tuning, Profiling, and Concurrency A. Key Concepts
B. Useful Functions C. Online Resources

Jupyter Notebook

Jupyter Notebook, previously known as IPython Notebooks, provides a tool to create and share web pages with text, charts, and Python code in a special format. Have a look at these notebook collections at the following links:

Often, the notebooks are used as an educational tool, or to demonstrate Python software. We can import or export notebooks either from plain Python code or from the special notebook format. The notebooks can be run locally, or we can make them available online by running a dedicated notebook server. Certain cloud computing solutions, such as Wakari and PiCloud, allow you to run notebooks in the cloud. Cloud computing is one of the topics of Chapter 11, Environments Outside the Python Ecosystem and Cloud Computing.

To start a session with Jupyter Notebook,enter the following instruction on the command line:

$ jupyter-notebook

This will start the notebook server and open a web page showing the contents of the folder from which the command will execute. You can then select New | Python 3 to start a new notebook in Python 3.

You can also open ch-01.ipynb, provided in the code package for this book. The ch-01 notebook file has the code for the simple applications that we will describe shortly.

You have been reading a chapter from
Python Data Analysis, Second Edition - Second Edition
Published in: Mar 2017
Publisher: Packt
ISBN-13: 9781787127487
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image