Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Practical Data Science Cookbook, Second Edition

You're reading from   Practical Data Science Cookbook, Second Edition Data pre-processing, analysis and visualization using R and Python

Arrow left icon
Product type Paperback
Published in Jun 2017
Publisher Packt
ISBN-13 9781787129627
Length 434 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (5):
Arrow left icon
Anthony Ojeda Anthony Ojeda
Author Profile Icon Anthony Ojeda
Anthony Ojeda
Prabhanjan Narayanachar Tattar Prabhanjan Narayanachar Tattar
Author Profile Icon Prabhanjan Narayanachar Tattar
Prabhanjan Narayanachar Tattar
ABHIJIT DASGUPTA ABHIJIT DASGUPTA
Author Profile Icon ABHIJIT DASGUPTA
ABHIJIT DASGUPTA
Sean P Murphy Sean P Murphy
Author Profile Icon Sean P Murphy
Sean P Murphy
Bhushan Purushottam Joshi Bhushan Purushottam Joshi
Author Profile Icon Bhushan Purushottam Joshi
Bhushan Purushottam Joshi
+1 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Preparing Your Data Science Environment FREE CHAPTER 2. Driving Visual Analysis with Automobile Data with R 3. Creating Application-Oriented Analyses Using Tax Data and Python 4. Modeling Stock Market Data 5. Visually Exploring Employment Data 6. Driving Visual Analyses with Automobile Data 7. Working with Social Graphs 8. Recommending Movies at Scale (Python) 9. Harvesting and Geolocating Twitter Data (Python) 10. Forecasting New Zealand Overseas Visitors 11. German Credit Data Analysis

Visualizing time series data


Visual depiction of time series is important to get early insights into the nature of the data. Visualization of time series is very simple in the sense that simply plotting the time series variable against the time itself gives insight about the behavior of the data. The R function plot.ts can be applied on the ts objects and the time series can be visualized. For the overseas visitors problem, we plot the number of visitors for the month against that time instance.

Getting ready

The reader needs to have the osv object from the previous session in the current environment.

How to do it...

  1. We will now apply the plot.ts function to obtain the visual depiction of the overseas data.
  2. Run the following line in the R session:

plot.ts
(osv, main="New Zealand Overseas Visitors",ylab="Frequency")

The output given by running the R line is shown in the following diagram:

It may be seen from the diagram that a certain pattern is recurrent and that cycle appears as 12 data points...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image