When the first release of Spark became available in 2014, Hadoop had already enjoyed several years of growth since 2009 onwards in the commercial space. Although Hadoop solved a major hurdle in analyzing large terabyte-scale datasets efficiently, using distributed computing methods that were broadly accessible, it still had shortfalls that hindered its wider acceptance.
The advent of Spark
Limitations of Hadoop
A few of the common limitations with Hadoop were as follows:
- I/O Bound operations: Due to the reliance on local disk storage for saving and retrieving data, any operation performed in Hadoop incurred an I/O overhead. The problem became more acute in cases of larger datasets that involved thousands of blocks of data...