The advent of Spark
When the first release of Spark became available in 2014, Hadoop had already enjoyed several years of growth since 2009 onwards in the commercial space. Although Hadoop solved a major hurdle in analyzing large terabyte-scale datasets efficiently, using distributed computing methods that were broadly accessible, it still had shortfalls that hindered its wider acceptance.
Limitations of Hadoop
A few of the common limitations with Hadoop were as follows:
- I/O Bound operations: Due to the reliance on local disk storage for saving and retrieving data, any operation performed in Hadoop incurred an I/O overhead. The problem became more acute in cases of larger datasets that involved thousands of blocks of data across hundreds of servers. To be fair, the ability to co-ordinate concurrent I/O operations (via HDFS) formed the foundation of distributed computing in Hadoop world. However, leveraging the capability and tuning the Hadoop cluster in an efficient manner across different...