Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Modern Data Architectures with Python

You're reading from   Modern Data Architectures with Python A practical guide to building and deploying data pipelines, data warehouses, and data lakes with Python

Arrow left icon
Product type Paperback
Published in Sep 2023
Publisher Packt
ISBN-13 9781801070492
Length 318 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Brian Lipp Brian Lipp
Author Profile Icon Brian Lipp
Brian Lipp
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1:Fundamental Data Knowledge
2. Chapter 1: Modern Data Processing Architecture FREE CHAPTER 3. Chapter 2: Understanding Data Analytics 4. Part 2: Data Engineering Toolset
5. Chapter 3: Apache Spark Deep Dive 6. Chapter 4: Batch and Stream Data Processing Using PySpark 7. Chapter 5: Streaming Data with Kafka 8. Part 3:Modernizing the Data Platform
9. Chapter 6: MLOps 10. Chapter 7: Data and Information Visualization 11. Chapter 8: Integrating Continous Integration into Your Workflow 12. Chapter 9: Orchestrating Your Data Workflows 13. Part 4:Hands-on Project
14. Chapter 10: Data Governance 15. Chapter 11: Building out the Groundwork 16. Chapter 12: Completing Our Project 17. Index 18. Other Books You May Enjoy

Documentation

When starting out on a project, it’s good to catch up on the basics of what the project is about and how it will be interacted with. Here, we will lay out our schemas and high-level C4 System Context diagrams. For these diagrams, I used PlantUML code, which is another simple language for creating diagrams. PyCharm will display them and check your syntax so it is very easy to work with.

Schema diagram

Schema diagrams are very useful for users who want to get a basic understanding of the data and how they might use it. Normally, in a schema diagram, you will find the field names, the types, and sometimes sample data. This type of diagram works well for structured data with few columns. If your data is semi-structured or has a significant number of columns, I would avoid using this diagram and use something in JSON format instead.

Here we have 3 tables in our Bronze layer: sales, machine_raw, and sap_BSEG.

Figure 12.1: Bronze layer 1

Figure 12.1: Bronze layer...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime