Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Pandas for Finance

You're reading from   Mastering Pandas for Finance Master pandas, an open source Python Data Analysis Library, for financial data analysis

Arrow left icon
Product type Paperback
Published in May 2015
Publisher Packt
ISBN-13 9781783985104
Length 298 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Michael Heydt Michael Heydt
Author Profile Icon Michael Heydt
Michael Heydt
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Started with pandas Using Wakari.io FREE CHAPTER 2. Introducing the Series and DataFrame 3. Reshaping, Reorganizing, and Aggregating 4. Time-series 5. Time-series Stock Data 6. Trading Using Google Trends 7. Algorithmic Trading 8. Working with Options 9. Portfolios and Risk Index

Technical analysis techniques


We will now cover two categories of technical analysis techniques, which utilize moving averages in different ways to be able to determine trends in market movements and hence give us the information needed to make potentially profitable transactions. We will examine how this works in this section, and in the upcoming section on Zipline, we will see how to implement these strategies in pandas and Zipline.

Crossovers

A crossover is the most basic type of signal for trading. The simplest form of a crossover is when the price of an asset moves from one side of a moving average to the other. This crossover represents a change in momentum and can be used as a point of making the decision to enter or exit the market.

The following command exemplifies several crossovers in the Microsoft data:

In [8]:
   msft['2002-1':'2002-9'][['Adj Close', 
                            'MA30']].plot(figsize=(12,8)); 

As an example, the cross occurring on July 09, 2002, is a signal of...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image