Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Clojure

You're reading from   Mastering Clojure Understand the philosophy of the Clojure language and dive into its inner workings to unlock its advanced features, methodologies, and constructs

Arrow left icon
Product type Paperback
Published in Mar 2016
Publisher Packt
ISBN-13 9781785889745
Length 266 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Akhil Wali Akhil Wali
Author Profile Icon Akhil Wali
Akhil Wali
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Working with Sequences and Patterns FREE CHAPTER 2. Orchestrating Concurrency and Parallelism 3. Parallelization Using Reducers 4. Metaprogramming with Macros 5. Composing Transducers 6. Exploring Category Theory 7. Programming with Logic 8. Leveraging Asynchronous Tasks 9. Reactive Programming 10. Testing Your Code 11. Troubleshooting and Best Practices A. References
Index

Using fold to parallelize collections

A collection that implements the CollReduce protocol is still sequential by nature. Using the reduce function with CollReduce does have a certain amount of performance gain, but it still processes elements in a collection in a sequential order. The most obvious way to improve the performance of a computation that is performed over a collection is parallelization. Such computations can be parallelized if we ignore the ordering of elements in a given collection to produce the result of the computation. In the reducers library, this is implemented based on the fork/join model of parallelization from the java.util.concurrent namespace. The fork/join model essentially partitions a collection over which a computation has to be performed into two halves and processes each partition in parallel. This halving of the collection is done in a recursive manner. The granularity of the partitions affects the overall performance of a computation modeled using fork...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image