Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering 5G Network Design, Implementation, and Operations

You're reading from   Mastering 5G Network Design, Implementation, and Operations A comprehensive guide to understanding, designing, deploying, and managing 5G networks

Arrow left icon
Product type Paperback
Published in Jun 2023
Publisher Packt
ISBN-13 9781838980108
Length 434 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (3):
Arrow left icon
Ananya Simlai Ananya Simlai
Author Profile Icon Ananya Simlai
Ananya Simlai
Shyam Varan Nath Shyam Varan Nath
Author Profile Icon Shyam Varan Nath
Shyam Varan Nath
Oğuzhan Kara Oğuzhan Kara
Author Profile Icon Oğuzhan Kara
Oğuzhan Kara
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Preface 1. Part 1:Introduction to 5G
2. Chapter 1: Introduction to 5G FREE CHAPTER 3. Chapter 2: End-to-End Architecture Components, Concepts, Security, and Transport 4. Chapter 3: Building Blocks – Cloud Native Infrastructure 5. Chapter 4: 5G Air Interface and Physical Layer Procedures – Part 1 6. Chapter 5: 5G Air Interface and Physical Layer Procedures – Part 2 7. Chapter 6: 5G Air Interface and Physical Layer Procedures – Part 3 8. Chapter 7: Packet Core Procedures 9. Chapter 8: Voice over New Radio (VoNR) 10. Part 2:5G Network Design, Deployment Models, and Advanced Use Cases
11. Chapter 9: 5G Deployment Options 12. Chapter 10: 5G Non-Standalone Networks 13. Chapter 11: 5G Standalone Networks 14. Chapter 12: 5G Infrastructure Design 15. Chapter 13: 5G Network Slicing 16. Chapter 14: 5G and Autonomous Vehicles 17. Chapter 15: 5G Fixed Mobile Convergence 18. Chapter 16: 5G and Satellite Communications 19. Chapter 17: Automation, Orchestration, and Testing 20. Index 21. Other Books You May Enjoy Appendix

Channel coding schemes

Low-Density Parity Check (LDPC) code is used for eMBB physical data channels in which polar codes are employed for eMBB physical control channels, as well as for the PBCH. These channel coding schemes provide better throughput and latency performance compared to what we have in legacy LTE. Note that channel coding for other use cases such as massive Machine Type Communications (mMTC) and Ultra-Reliable Low Latency Communications (URLLC) are not part of Release 15’s scope. So, let’s start.

Transport channel coding chains

The following figure represents the basic coding scheme for the downlink shared channel. The diagram is very similar to what we have in LTE. A CRC is attached to the transport block, it is segmented onto the code blocks, and then, additional CRSes are attached to each code block:

Figure 6.14 – Transport channel coding for the downlink shared channel

Figure 6.14 – Transport channel coding for the downlink shared channel

Then, LDPC coding is performed for each...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime