Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning with Spark

You're reading from   Machine Learning with Spark Develop intelligent, distributed machine learning systems

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781785889936
Length 532 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Manpreet Singh Ghotra Manpreet Singh Ghotra
Author Profile Icon Manpreet Singh Ghotra
Manpreet Singh Ghotra
Rajdeep Dua Rajdeep Dua
Author Profile Icon Rajdeep Dua
Rajdeep Dua
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Up and Running with Spark FREE CHAPTER 2. Math for Machine Learning 3. Designing a Machine Learning System 4. Obtaining, Processing, and Preparing Data with Spark 5. Building a Recommendation Engine with Spark 6. Building a Classification Model with Spark 7. Building a Regression Model with Spark 8. Building a Clustering Model with Spark 9. Dimensionality Reduction with Spark 10. Advanced Text Processing with Spark 11. Real-Time Machine Learning with Spark Streaming 12. Pipeline APIs for Spark ML

Evaluating the performance of regression models

We saw in Chapter 6, Building a Classification Model with Spark, that evaluation methods for classification models typically focus on measurements related to predicted class memberships relative to the actual class memberships. These are binary outcomes (either the predicted class is correct or incorrect), and it is less important whether the model just barely predicted correctly or not; what we care most about is the number of correct and incorrect predictions.

When dealing with regression models, it is very unlikely that our model will precisely predict the target variable, because the target variable can take on any real value. However, we would naturally like to understand how far away our predicted values are from the true values, so will we utilize a metric that takes into account the overall deviation.

Some of the standard evaluation metrics used to measure...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image