Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning OpenCV 3 Computer Vision with Python (Update)

You're reading from   Learning OpenCV 3 Computer Vision with Python (Update) Unleash the power of computer vision with Python using OpenCV

Arrow left icon
Product type Paperback
Published in Sep 2015
Publisher
ISBN-13 9781785283840
Length 266 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Table of Contents (11) Chapters Close

Preface 1. Setting Up OpenCV FREE CHAPTER 2. Handling Files, Cameras, and GUIs 3. Processing Images with OpenCV 3 4. Depth Estimation and Segmentation 5. Detecting and Recognizing Faces 6. Retrieving Images and Searching Using Image Descriptors 7. Detecting and Recognizing Objects 8. Tracking Objects 9. Neural Networks with OpenCV – an Introduction Index

Possible improvements and potential applications


We have illustrated how to build an ANN, feed it training data, and use it for classification. There are a number of aspects we can improve, depending on the task at hand, and a number of potential applications of our new-found knowledge.

Improvements

There are a number of improvements that can be applied to this approach, some of which we have already discussed:

  • For example, you could enlarge your dataset and iterate more times, until a performance peak is reached

  • You could also experiment with the several activation functions (cv2.ml.ANN_MLP_SIGMOID_SYM is not the only one; there is also cv2.ml.ANN_MLP_IDENTITY and cv2.ml.ANN_MLP_GAUSSIAN)

  • You could utilize different training flags (cv2.ml.ANN_MLP_UPDATE_WEIGHTS, cv2.ml.ANN_MLP_NO_INPUT_SCALE, cv2.ml.ANN_MLP_NO_OUTPUT_SCALE), and training methods (back propagation or resilient back propagation)

Aside from that, bear in mind one of the mantras of software development: there is no single best technology...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image