Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Keras 2.x Projects

You're reading from   Keras 2.x Projects 9 projects demonstrating faster experimentation of neural network and deep learning applications using Keras

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789536645
Length 394 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Keras FREE CHAPTER 2. Modeling Real Estate Using Regression Analysis 3. Heart Disease Classification with Neural Networks 4. Concrete Quality Prediction Using Deep Neural Networks 5. Fashion Article Recognition Using Convolutional Neural Networks 6. Movie Reviews Sentiment Analysis Using Recurrent Neural Networks 7. Stock Volatility Forecasting Using Long Short-Term Memory 8. Reconstruction of Handwritten Digit Images Using Autoencoders 9. Robot Control System Using Deep Reinforcement Learning 10. Reuters Newswire Topics Classifier in Keras 11. What is Next? 12. Other Books You May Enjoy

Summary

In this chapter, we have learned about the basics of CNNs. To begin with, the basic concepts of computer vision were analyzed. Computer vision is the discipline that studies how to enable computers to understand and interpret visual information that's present in images or videos. This also deals with the analysis of numerical images.

Then, the architecture of convolutional network models was explored. A CNN consists of a series of layers such as input, convolutional, ReLU, pool, and fully connected layers. Each identify as a level of the CNN. The convolutional layer is the main level of the network. Its goal is to identify patterns, such as curves, angles, circumferences, or squares that have been depicted in an image with high accuracy. The ReLU layer aims to erase negative values that have been obtained in previous levels, and it is usually placed after convolutional...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime