Data transformation alone may not improve the neural network's efficiency. The existence of large and small ranges of values within the same dataset can lead to overfitting (the model captures noise rather than signals). To avoid these situations, we normalize the dataset, and there are multiple DL4J implementations to do this. The normalization process converts and fits the raw time series data into a definite value range, for example, (0, 1). This will help the neural network process the data with less computational effort. We also discussed normalization in previous chapters, showing that it will reduce favoritism toward any specific label in the dataset while training a neural network.
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand