Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Generative Adversarial Networks with Keras

You're reading from   Hands-On Generative Adversarial Networks with Keras Your guide to implementing next-generation generative adversarial networks

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781789538205
Length 272 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Rafael Valle Rafael Valle
Author Profile Icon Rafael Valle
Rafael Valle
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Section 1: Introduction and Environment Setup FREE CHAPTER
2. Deep Learning Basics and Environment Setup 3. Introduction to Generative Models 4. Section 2: Training GANs
5. Implementing Your First GAN 6. Evaluating Your First GAN 7. Improving Your First GAN 8. Section 3: Application of GANs in Computer Vision, Natural Language Processing, and Audio
9. Progressive Growing of GANs 10. Generation of Discrete Sequences Using GANs 11. Text-to-Image Synthesis with GANs 12. TequilaGAN - Identifying GAN Samples 13. Whats next in GANs

GANs and the birthday paradox

One of the biggest challenges in evaluating GANs samples is to understand how much of the real distribution the generator has learned. For example, let's consider the size of the support for the set of all the possible images of dogs. Naturally, this set must include millions of dog images that portray combinations of all dog features, including size, breed, hair color, pose, and more.

Assuming there are millions of dogs in real life that we humans perceive as unique, a GAN that has truly learned the distribution of dogs must be able to produce a similar number of unique dog images. Estimating the number of unique images of dogs a GAN is able to produce might seem like a daunting task at first, but researchers have found a brilliant crude estimate of this by using the birthday paradox.

The birthday paradox is commonly addressed in undergraduate...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image