Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Deep Learning with TensorFlow

You're reading from   Hands-On Deep Learning with TensorFlow Uncover what is underneath your data!

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781787282773
Length 174 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Dan Van Boxel Dan Van Boxel
Author Profile Icon Dan Van Boxel
Dan Van Boxel
Arrow right icon
View More author details
Toc

Results of the multiple hidden layer

Now, we'll look into what's going on inside a deep neural network. First, we'll verify the model accuracy. Then, we'll visualize and study the pixel weights. Finally, we'll look at the output weights as well.

After you've trained your deep neural network, let's take a look at the model accuracy. We'll do this the same way that we did for the single hidden layer model. The only difference this time, is that we have many more saved samples of the training and testing accuracy, having gone from many more epochs.

As always, don't worry if you don't have Matplotlib; printing parts of the arrays is fine.

Understanding the multiple hidden layers graph

Execute the following code to see the result:

# Plot the accuracy curves
plt.figure(figsize=(6,6))
plt.plot(train_acc,'bo')
plt.plot(test_acc,'rx')
Understanding the multiple hidden layers graph

From the preceding output graph, we reach about 68 percent training accuracy and maybe 63 percent validation...

You have been reading a chapter from
Hands-On Deep Learning with TensorFlow
Published in: Jul 2017
Publisher: Packt
ISBN-13: 9781787282773
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image