Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Application Development with PyCharm

You're reading from   Hands-On Application Development with PyCharm Build applications like a pro with the ultimate python development tool

Arrow left icon
Product type Paperback
Published in Oct 2023
Publisher Packt
ISBN-13 9781837632350
Length 652 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Quan Nguyen Quan Nguyen
Author Profile Icon Quan Nguyen
Quan Nguyen
Bruce M. Van Horn II Bruce M. Van Horn II
Author Profile Icon Bruce M. Van Horn II
Bruce M. Van Horn II
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Preface 1. Part 1: The Basics of PyCharm
2. Chapter 1: Introduction to PyCharm – the Most Popular IDE for Python FREE CHAPTER 3. Chapter 2: Installing and Configuring PyCharm 4. Part 2: Improving Your Productivity
5. Chapter 3: Customizing Interpreters and Virtual Environments 6. Chapter 4: Editing and Formatting with Ease in PyCharm 7. Chapter 5: Version Control with Git in PyCharm 8. Chapter 6: Seamless Testing, Debugging, and Profiling 9. Part 3: Web Development in PyCharm
10. Chapter 7: Web Development with JavaScript, HTML, and CSS 11. Chapter 8: Building a Dynamic Web Application with Flask 12. Chapter 9: Creating a RESTful API with FastAPI 13. Chapter 10: More Full Stack Frameworks – Django and Pyramid 14. Chapter 11: Understanding Database Management in PyCharm 15. Part 4: Data Science with PyCharm
16. Chapter 12: Turning On Scientific Mode 17. Chapter 13: Dynamic Data Viewing with SciView and Jupyter 18. Chapter 14: Building a Data Pipeline in PyCharm 19. Part 5: Plugins and Conclusion
20. Chapter 15: More Possibilities with Plugins 21. Chapter 16: Your Next Steps with PyCharm 22. Index 23. Other Books You May Enjoy

Machine learning-based insights

Unlike the previous analysis methods, the methods discussed in this subsection and other similar ones are based on more complex mathematical models and ML algorithms. Given the scope of this book, we will not be going into the specific theoretical details for these models, but it’s still worth seeing some of them in action by applying them to our dataset.

First, let’s consider the feature correlation matrix for our dataset. As the name suggests, this model is a matrix (a 2D table) that contains the correlation between each pair of numerical attributes (or features) within our dataset. A correlation between two features is a real number between -1 and 1, indicating the magnitude and direction of the correlation. The higher the value, the more correlated the two features are.

To obtain the feature correlation matrix from a pandas DataFrame, we must call the corr() method, as shown here:

corr_matrix = combined_user_df.corr()

We...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime