As we know, convolution layers are really good at processing images. They are capable of learning important features, such as edges, shapes, and complex objects, effectively, as shown in neural networks, such as Inception, AlexNet, Visual Geometry Group (VGG), and ResNet. Ian Goodfellow and others proposed a Generative Adversarial Network (GAN) with dense layers in their paper titled Generative Adversarial Nets, which can be found at the following link: https://arxiv.org/pdf/1406.2661.pdf. Complex neural networks, such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Long Short-Term Memory (LSTM) were not initially tested in GANs. The development of Deep Convolutional Generative Adversarial Networks (DCGANs) was an important step toward using CNNs for image generation. A DCGAN uses convolutional layers instead...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine