Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Essential PySpark for Scalable Data Analytics

You're reading from   Essential PySpark for Scalable Data Analytics A beginner's guide to harnessing the power and ease of PySpark 3

Arrow left icon
Product type Paperback
Published in Oct 2021
Publisher Packt
ISBN-13 9781800568877
Length 322 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Sreeram Nudurupati Sreeram Nudurupati
Author Profile Icon Sreeram Nudurupati
Sreeram Nudurupati
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: Data Engineering
2. Chapter 1: Distributed Computing Primer FREE CHAPTER 3. Chapter 2: Data Ingestion 4. Chapter 3: Data Cleansing and Integration 5. Chapter 4: Real-Time Data Analytics 6. Section 2: Data Science
7. Chapter 5: Scalable Machine Learning with PySpark 8. Chapter 6: Feature Engineering – Extraction, Transformation, and Selection 9. Chapter 7: Supervised Machine Learning 10. Chapter 8: Unsupervised Machine Learning 11. Chapter 9: Machine Learning Life Cycle Management 12. Chapter 10: Scaling Out Single-Node Machine Learning Using PySpark 13. Section 3: Data Analysis
14. Chapter 11: Data Visualization with PySpark 15. Chapter 12: Spark SQL Primer 16. Chapter 13: Integrating External Tools with Spark SQL 17. Chapter 14: The Data Lakehouse 18. Other Books You May Enjoy

Upgrading pandas to PySpark using Koalas

pandas is the defacto standard for data processing in standard Python, the same as Spark has become the defacto standard for distributed data processing. The pandas API is Python-related and leverages a coding style that makes use of Python's unique features to write code that is readable and beautiful. However, Spark is based on the JVM, and even the PySpark draws heavily on the Java language, including in naming conventions and function names. Thus, it is not very easy or intuitive for a pandas user to switch to PySpark, and a considerable learning curve is involved. Moreover, PySpark executes code in a distributed manner and the user needs to understand the nuances of how distributed code works when intermixing PySpark code with standard single-node Python code. This is a deterrent to an average pandas user to pick up and use PySpark. To overcome this issue, the Apache Spark developer community came up with another open source library...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime