Similarity learning is the process of training a metric to compute the similarity between two entities. This could also be termed as metric learning, as the similarity is learned. A metric could be Euclidean or cosine or some other custom distance function. Entities could be any data such as an image, video, text or tables. To compute a metric, a vector representation of the image is required. This representation can be the features computed by a CNN as described in Chapter 3, Image Retrieval. The CNN that was learned for object classification can be used as the vector to compute the metric. The feature vector obtained for image classification would not be the best representation of the task at hand. In similarity learning, we find out about CNNs that generate features trained for a similarity learning task. Some applications of similarity learning...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine