Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Cloud Native Programming with Golang

You're reading from   Cloud Native Programming with Golang Develop microservice-based high performance web apps for the cloud with Go

Arrow left icon
Product type Paperback
Published in Dec 2017
Publisher Packt
ISBN-13 9781787125988
Length 404 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Martin Helmich Martin Helmich
Author Profile Icon Martin Helmich
Martin Helmich
Mina Andrawos Mina Andrawos
Author Profile Icon Mina Andrawos
Mina Andrawos
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Modern Microservice Architectures FREE CHAPTER 2. Building Microservices Using Rest APIs 3. Securing Microservices 4. Asynchronous Microservice Architectures Using Message Queues 5. Building a Frontend with React 6. Deploying Your Application in Containers 7. AWS I – Fundamentals, AWS SDK for Go, and EC2 8. AWS II–S3, SQS, API Gateway, and DynamoDB 9. Continuous Delivery 10. Monitoring Your Application 11. Migration 12. Where to Go from Here?

What are containers?


Container technologies such as Docker use isolation features offered by modern operating systems, such as namespaces and control groups (cgroups) in Linux. Using these features allows the operating system to isolate multiple running processes from each other to a very large extent. For example, a container runtime might provide two processes with two entirely separate filmount namespaces or two separate networking stacks using network namespaces. In addition to namespaces, cgroups can be used to ensure that each process does not use more than a previously allocated amount of resources (such as CPU time, memory or I/O, and network bandwidth).

In contrast to traditional virtual machines, a container runs completely within the operating system of the host environment; there is no virtualized hardware and OS running on that. Also, in many container runtimes, you do not even have all the typical processes that you will find in a regular operating system. For example, a Docker...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image