Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Building AI Applications with Microsoft Semantic Kernel

You're reading from   Building AI Applications with Microsoft Semantic Kernel Easily integrate generative AI capabilities and copilot experiences into your applications

Arrow left icon
Product type Paperback
Published in Jun 2024
Publisher Packt
ISBN-13 9781835463703
Length 252 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Lucas A. Meyer Lucas A. Meyer
Author Profile Icon Lucas A. Meyer
Lucas A. Meyer
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Part 1:Introduction to Generative AI and Microsoft Semantic Kernel FREE CHAPTER
2. Chapter 1: Introducing Microsoft Semantic Kernel 3. Chapter 2: Creating Better Prompts 4. Part 2: Creating AI Applications with Semantic Kernel
5. Chapter 3: Extending Semantic Kernel 6. Chapter 4: Performing Complex Actions by Chaining Functions 7. Chapter 5: Programming with Planners 8. Chapter 6: Adding Memories to Your AI Application 9. Part 3: Real-World Use Cases
10. Chapter 7: Real-World Use Case – Retrieval-Augmented Generation 11. Chapter 8: Real-World Use Case – Making Your Application Available on ChatGPT 12. Index 13. Other Books You May Enjoy

Creating Better Prompts

As a developer, you can request that an LLM completes a task by submitting a prompt to it. In the previous chapter, we saw some examples of prompts, such as “Tell me a knock-knock joke” and “What is the flight duration between New York City and Rio de Janeiro?” As LLMs became more powerful, the tasks that they could accomplish became more complex.

Researchers discovered that using different techniques to build prompts yielded vastly different results. The process of crafting prompts that improve the likelihood of getting the desired answer is called prompt engineering, and the value of creating better prompts gave birth to a new profession: prompt engineer. This is someone who doesn’t need to know how to code in any programming language but can create prompts using natural language that return the desired results.

Microsoft Semantic Kernel uses the concept of prompt templating, the creation of structured templates for...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image