Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Arduino Robotic Projects

You're reading from   Arduino Robotic Projects Build awesome and complex robots with the power of Arduino.

Arrow left icon
Product type Paperback
Published in Aug 2014
Publisher
ISBN-13 9781783989829
Length 240 pages
Edition Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Richard Grimmett Richard Grimmett
Author Profile Icon Richard Grimmett
Richard Grimmett
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Arduino Robotic Projects
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Powering on Arduino FREE CHAPTER 2. Getting Started with the Arduino IDE 3. Simple Programming Concepts Using the Arduino IDE 4. Accessing the GPIO Pins 5. Working with Displays 6. Controlling DC Motors 7. Controlling Servos with Arduino 8. Avoiding Obstacles Using Sensors 9. Even More Useful Sensors 10. Going Truly Mobile – the Remote Control of Your Robot 11. Using a GPS Device with Arduino 12. Taking Your Robot to Sea 13. Robots That Can Fly 14. Small Projects with Arduino Index

GPS tutorial


The Global Positioning System (GPS) is a system of satellites that transmits signals. GPS devices use these signals to calculate a position. There are a total of 24 satellites that transmit signals all around the earth at any given moment, but your device can only see the signal from a much smaller set of satellites.

Each of these satellites transmits a very accurate time signal that your device can receive and interpret. It receives the time signal from each of these satellites, and then, based on the delay (the time it takes the signal to reach the device), it calculates the receiver's position using a technique called triangulation.

The following two diagrams illustrate how the device uses the delay differences from three satellites to calculate its position:

The GPS device is able to detect the three signals and the time delays associated with receiving these signals.

Note

Time delay refers to the time difference between the travel time of each of these three signals.

In the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image