Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Unsupervised Learning Workshop

You're reading from   The Unsupervised Learning Workshop Get started with unsupervised learning algorithms and simplify your unorganized data to help make future predictions

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781800200708
Length 550 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Benjamin Johnston Benjamin Johnston
Author Profile Icon Benjamin Johnston
Benjamin Johnston
Christopher Kruger Christopher Kruger
Author Profile Icon Christopher Kruger
Christopher Kruger
Aaron Jones Aaron Jones
Author Profile Icon Aaron Jones
Aaron Jones
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface
1. Introduction to Clustering 2. Hierarchical Clustering FREE CHAPTER 3. Neighborhood Approaches and DBSCAN 4. Dimensionality Reduction Techniques and PCA 5. Autoencoders 6. t-Distributed Stochastic Neighbor Embedding 7. Topic Modeling 8. Market Basket Analysis 9. Hotspot Analysis Appendix

t-Distributed SNE

t-SNE aims to address the crowding problem using a modified version of the KL divergence cost function and by substituting the Gaussian distribution with the Student's t-distribution in the low-dimensional space. The Student's t-distribution is a probability distribution much like Gaussian and is used when we have a small sample size and unknown population standard deviation. It is often used in the Student's t-test.

The modified KL cost function considers the pairwise distances in the low-dimensional space equally, while the Student's distribution employs a heavy tail in the low-dimensional space to avoid the crowding problem. In the higher-dimensional probability calculation, the Gaussian distribution is still used to ensure that a moderate distance in the higher dimensions is still represented as such in the lower dimensions. This combination of different distributions in the respective spaces allows for the faithful representation of datapoints...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime