Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
The Supervised Learning Workshop

You're reading from   The Supervised Learning Workshop Predict outcomes from data by building your own powerful predictive models with machine learning in Python

Arrow left icon
Product type Paperback
Published in Feb 2020
Publisher Packt
ISBN-13 9781800209046
Length 532 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (4):
Arrow left icon
Blaine Bateman Blaine Bateman
Author Profile Icon Blaine Bateman
Blaine Bateman
Ashish Ranjan Jha Ashish Ranjan Jha
Author Profile Icon Ashish Ranjan Jha
Ashish Ranjan Jha
Ishita Mathur Ishita Mathur
Author Profile Icon Ishita Mathur
Ishita Mathur
Benjamin Johnston Benjamin Johnston
Author Profile Icon Benjamin Johnston
Benjamin Johnston
Arrow right icon
View More author details
Toc

Missing Values

When there is no value (that is, a null value) recorded for a particular feature in a data point, we say that the data is missing. Having missing values in a real dataset is inevitable; no dataset is ever perfect. However, it is important to understand why the data is missing, and whether there is a factor that has affected the loss of data. Appreciating and recognizing this allows us to handle the remaining data in an appropriate manner. For example, if the data is missing randomly, then it's highly likely that the remaining data is still representative of the population. However, if the missing data is not random in nature and we assume that it is, it could bias our analysis and subsequent modeling.

Let's look at the common reasons (or mechanisms) for missing data:

  • Missing Completely at Random (MCAR): Values in a dataset are said to be MCAR if there is no correlation whatsoever between the value missing and any other recorded variable or external...
You have been reading a chapter from
The Supervised Learning Workshop - Second Edition
Published in: Feb 2020
Publisher: Packt
ISBN-13: 9781800209046
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime