Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
The Data Science Workshop
The Data Science Workshop

The Data Science Workshop: Learn how you can build machine learning models and create your own real-world data science projects , Second Edition

Arrow left icon
Profile Icon Anthony So Profile Icon Thomas Joseph Profile Icon Robert Thas John Profile Icon Andrew Worsley Profile Icon Dr. Samuel Asare +1 more Show less
Arrow right icon
€23.99 €26.99
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3 (2 Ratings)
eBook Aug 2020 824 pages 2nd Edition
eBook
€23.99 €26.99
Paperback
€32.99
Subscription
Free Trial
Renews at €18.99p/m
Arrow left icon
Profile Icon Anthony So Profile Icon Thomas Joseph Profile Icon Robert Thas John Profile Icon Andrew Worsley Profile Icon Dr. Samuel Asare +1 more Show less
Arrow right icon
€23.99 €26.99
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3 (2 Ratings)
eBook Aug 2020 824 pages 2nd Edition
eBook
€23.99 €26.99
Paperback
€32.99
Subscription
Free Trial
Renews at €18.99p/m
eBook
€23.99 €26.99
Paperback
€32.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

The Data Science Workshop

2. Regression

Overview

This chapter is an introduction to linear regression analysis and its application to practical problem-solving in data science. You will learn how to use Python, a versatile programming language, to carry out regression analysis and examine the results. The use of the logarithm function to transform inherently non-linear relationships between variables and to enable the application of the linear regression method of analysis will also be introduced.

By the end of this chapter, you will be able to identify and import the Python modules required for regression analysis; use the pandas module to load a dataset and prepare it for regression analysis; create a scatter plot of bivariate data and fit a regression line through it; use the methods available in the Python statsmodels module to fit a regression model to a dataset; explain the results of simple and multiple linear regression analysis; assess the goodness of fit of a linear regression model; and apply linear regression analysis as a tool for practical problem-solving.

Introduction

The previous chapter provided a primer to Python programming and an overview of the data science field. Data science is a relatively young multidisciplinary field of study. It draws its concepts and methods from the traditional fields of statistics, computer science, and the broad field of artificial intelligence (AI), especially the subfield of AI called machine learning:

Figure 2.1: The data science models

Figure 2.1: The data science models

As you can see in Figure 2.1, data science aims to make use of both structured and unstructured data, develop models that can be effectively used, make predictions, and also derive insights for decision making.

A loose description of structured data will be any set of data that can be conveniently arranged into a table that consists of rows and columns. This kind of data is normally stored in database management systems.

Unstructured data, however, cannot be conveniently stored in tabular form – an example of such a dataset is a text document. To achieve the objectives of data science, a flexible programming language that effectively combines interactivity with computing power and speed is necessary. This is where the Python programming language meets the needs of data science and, as mentioned in Chapter 1, Introduction to Data Science in Python, we will be using Python in this book.

The need to develop models to make predictions and to gain insights for decisionmaking cuts across many industries. Data science is, therefore, finding uses in many industries, including healthcare, manufacturing and the process industries in general, the banking and finance sectors, marketing and e-commerce, the government, and education.

In this chapter, we will be specifically be looking at regression, which is one of the key methods that is used regularly in data science, in order to model relationships between variables, where the target variable (that is, the value you're looking for) is a real number.

Consider a situation where a real estate business wants to understand and, if possible, model the relationship between the prices of property in a city and knowing the key attributes of the properties. This is a data science problem and it can be tackled using regression.

This is because the target variable of interest, which is the price of a property, is a real number. Examples of the key attributes of a property that can be used to predict its value are as follows:

  • The age of the property
  • The number of bedrooms in a property
  • Whether the property has a pool or not
  • The area of land the property covers
  • The distance of the property from facilities such as railway stations and schools

Regression analysis can be employed to study this scenario, in which you have to create a function that maps the key attributes of a property to the target variable, which, in this case, is the price of a property.

Regression analysis is part of a family of machine learning techniques called supervised machine learning. It is called supervised because the machine learning algorithm that learns the model is provided a kind of question and answer dataset to learn from. The question here is the key attribute and the answer is the property price for each property that is used in the study, as shown in the following figure:

Figure 2.2: Example of a supervised learning technique

Figure 2.2: Example of a supervised learning technique

Once a model has been learned by the algorithm, we can provide the model with a question (that is, a set of attributes for a property whose price we want to find) for it to tell us what the answer (that is, the price) of that property will be.

This chapter is an introduction to linear regression and how it can be applied to solve practical problems like the one described previously in data science. Python provides a rich set of modules (libraries) that can be used to conduct rigorous regression analysis of various kinds. In this chapter, we will make use of the following Python modules, among others: pandas, statsmodels, seaborn, matplotlib, and scikit-learn.

Simple Linear Regression

In Figure 2.3, you can see the crime rate per capita and the median value of owner-occupied homes for the city of Boston, which is the largest city of the Commonwealth of Massachusetts. We seek to use regression analysis to gain an insight into what drives crime rates in the city.

Such analysis is useful to policy makers and society in general because it can help with decision-making directed toward the reduction of the crime rate, and hopefully the eradication of crime across communities. This can make communities safer and increase the quality of life in society.

This is a data science problem and is of the supervised machine learning type. There is a dependent variable named crime rate (let's denote it Y), whose variation we seek to understand in terms of an independent variable, named Median value of owner-occupied homes (let's denote it X).

In other words, we are trying to understand the variation in crime rate based on different neighborhoods.

Regression analysis is about finding a function, under a given set of assumptions, that best describes the relationship between the dependent variable (Y in this case) and the independent variable (X in this case).

When the number of independent variables is only one, and the relationship between the dependent and the independent variable is assumed to be a straight line, as shown in Figure 2.3, this type of regression analysis is called simple linear regression. The straight-line relationship is called the regression line or the line of best fit:

Figure 2.3: A scatter plot of the crime rate against the median value 
of owner-occupied homes

Figure 2.3: A scatter plot of the crime rate against the median value of owner-occupied homes

In Figure 2.3, the regression line is shown as a solid black line. Ignoring the poor quality of the fit of the regression line to the data in the figure, we can see a decline in crime rate per capita as the median value of owner-occupied homes increases.

From a data science point of view, this observation may pose lots of questions. For instance, what is driving the decline in crime rate per capita as the median value of owner-occupier homes increases? Are richer suburbs and towns receiving more policing resources than less fortunate suburbs and towns? Unfortunately, these questions cannot be answered with such a simple plot as we find in Figure 2.3. But the observed trend may serve as a starting point for a discussion to review the distribution of police and community-wide security resources.

Returning to the question of how well the regression line fits the data, it is evident that almost one-third of the regression line has no data points scattered around it at all. Many data points are simply clustered on the horizontal axis around the zero (0) crime rate mark. This is not what you expect of a good regression line that fits the data well. A good regression line that fits the data well must sit amidst a cloud of data points.

It appears that the relationship between the crime rate per capita and the median value of owner-occupied homes is not as linear as you may have thought initially.

In this chapter, we will learn how to use the logarithm function (a mathematical function for transforming values) to linearize the relationship between the crime rate per capita and the median value of owner-occupied homes, in order to improve the fit of the regression line to the data points on the scatter graph.

We have ignored a very important question thus far. That is, how can you determine the regression line for a given set of data?

A common method used to determine the regression line is called the method of least squares, which is covered in the next section.

The Method of Least Squares

The simple linear regression line is generally of the form shown in Figure 2.4, where β0 and β1 are unknown constants, representing the intercept and the slope of the regression line, respectively.

The intercept is the value of the dependent variable (Y) when the independent variable (X) has a value of zero (0). The slope is a measure of the rate at which the dependent variable (Y) changes when the independent variable (X) changes by one (1). The unknown constants are called the model coefficients or parameters. This form of the regression line is sometimes known as the population regression line, and, as a probabilistic model, it fits the dataset approximately, hence the use of the symbol () in Figure 2.4. The model is called probabilistic because it does not model all the variability in the dependent variable (Y) :

Figure 2.4: Simple linear regression equation

Figure 2.4: Simple linear regression equation

Calculating the difference between the actual dependent variable value and the predicted dependent variable value gives an error that is commonly termed as the residual (ϵi).

Repeating this calculation for every data point in the sample, the residual (ϵi) for every data point can be squared, to eliminate algebraic signs, and added together to obtain the error sum of squares (ESS).

The least squares method seeks to minimize the ESS.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Gain a full understanding of the model production and deployment process
  • Build your first machine learning model in just five minutes and get a hands-on machine learning experience
  • Understand how to deal with common challenges in data science projects

Description

Where there’s data, there’s insight. With so much data being generated, there is immense scope to extract meaningful information that’ll boost business productivity and profitability. By learning to convert raw data into game-changing insights, you’ll open new career paths and opportunities. The Data Science Workshop begins by introducing different types of projects and showing you how to incorporate machine learning algorithms in them. You’ll learn to select a relevant metric and even assess the performance of your model. To tune the hyperparameters of an algorithm and improve its accuracy, you’ll get hands-on with approaches such as grid search and random search. Next, you’ll learn dimensionality reduction techniques to easily handle many variables at once, before exploring how to use model ensembling techniques and create new features to enhance model performance. In a bid to help you automatically create new features that improve your model, the book demonstrates how to use the automated feature engineering tool. You’ll also understand how to use the orchestration and scheduling workflow to deploy machine learning models in batch. By the end of this book, you’ll have the skills to start working on data science projects confidently. By the end of this book, you’ll have the skills to start working on data science projects confidently.

Who is this book for?

This is one of the most useful data science books for aspiring data analysts, data scientists, database engineers, and business analysts. It is aimed at those who want to kick-start their careers in data science by quickly learning data science techniques without going through all the mathematics behind machine learning algorithms. Basic knowledge of the Python programming language will help you easily grasp the concepts explained in this book.

What you will learn

  • Explore the key differences between supervised learning and unsupervised learning
  • Manipulate and analyze data using scikit-learn and pandas libraries
  • Understand key concepts such as regression, classification, and clustering
  • Discover advanced techniques to improve the accuracy of your model
  • Understand how to speed up the process of adding new features
  • Simplify your machine learning workflow for production

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Aug 28, 2020
Length: 824 pages
Edition : 2nd
Language : English
ISBN-13 : 9781800569409
Category :
Languages :
Concepts :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Aug 28, 2020
Length: 824 pages
Edition : 2nd
Language : English
ISBN-13 : 9781800569409
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 92.97
The Data Analysis Workshop
€29.99
The Statistics and Calculus with Python Workshop
€29.99
The Data Science Workshop
€32.99
Total 92.97 Stars icon

Table of Contents

15 Chapters
1. Introduction to Data Science in Python Chevron down icon Chevron up icon
2. Regression Chevron down icon Chevron up icon
3. Binary Classification Chevron down icon Chevron up icon
4. Multiclass Classification with RandomForest Chevron down icon Chevron up icon
5. Performing Your First Cluster Analysis Chevron down icon Chevron up icon
6. How to Assess Performance Chevron down icon Chevron up icon
7. The Generalization of Machine Learning Models Chevron down icon Chevron up icon
8. Hyperparameter Tuning Chevron down icon Chevron up icon
9. Interpreting a Machine Learning Model Chevron down icon Chevron up icon
10. Analyzing a Dataset Chevron down icon Chevron up icon
11. Data Preparation Chevron down icon Chevron up icon
12. Feature Engineering Chevron down icon Chevron up icon
13. Imbalanced Datasets Chevron down icon Chevron up icon
14. Dimensionality Reduction Chevron down icon Chevron up icon
15. Ensemble Learning Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
(2 Ratings)
5 star 50%
4 star 0%
3 star 0%
2 star 0%
1 star 50%
Hakuna Matata Feb 04, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This workshop is bold and I might add a successful attempt at providing a good conceptual foundation of some of the key concepts in data science. Love the fact it not only covers fundamentals but also provides some intermediate and advanced concepts such as assessing model performance, concepts of generalization, hyperparameter tuning, interpretability, and how to handle imbalanced datasets. Overall, I enjoyed the detail, depth, and breadth of this workshop.
Amazon Verified review Amazon
Susan G Martin Nov 24, 2021
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
Poorly written, but the editing is even worse. The author could have used a good reviewer/editor.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.