Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Swift Data Structure and Algorithms

You're reading from   Swift Data Structure and Algorithms Implement Swift structures and algorithms natively

Arrow left icon
Product type Paperback
Published in Nov 2016
Publisher Packt
ISBN-13 9781785884504
Length 286 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Mario Eguiluz Alebicto Mario Eguiluz Alebicto
Author Profile Icon Mario Eguiluz Alebicto
Mario Eguiluz Alebicto
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Walking Across the Playground FREE CHAPTER 2. Working with Commonly Used Data Structures 3. Standing on the Shoulders of Giants 4. Sorting Algorithms 5. Seeing the Forest through the Tree 6. Advanced Searching Methods 7. Graph Algorithms 8. Performance and Algorithm Efficiency 9. Choosing the Perfect Algorithm

Binary search trees


Binary search tree basic operations such as access, search, insertion, and deletion take between O(n) and O(log(n)) time. Being both values the worst and the average scenarios. At the end, these times are going to depend on the height of the tree itself.

For example, for a complete binary search tree with n nodes, these operations could take O(log(n)) time. But if a tree with the same number of nodes n is built like a linked list (just 1 child per node), having more levels/depth for the same n nodes, then the operations are going to take O(n) time.

In order to make basic operations such as insertion or search, we need to scan nodes from the root to the leaves. Because of this, we can infer that the height of the tree (the distance or nodes between the root and a leaf) will affect the time we spend performing basic operations.

Now, before jumping into the code of some operations, such as inserting and searching nodes in a binary search tree, lets recall the basic property...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime