Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
SAS for Finance

You're reading from   SAS for Finance Forecasting and data analysis techniques with real-world examples to build powerful financial models

Arrow left icon
Product type Paperback
Published in May 2018
Publisher Packt
ISBN-13 9781788624565
Length 306 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Harish Gulati Harish Gulati
Author Profile Icon Harish Gulati
Harish Gulati
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Time Series Modeling in the Financial Industry 2. Forecasting Stock Prices and Portfolio Decisions using Time Series FREE CHAPTER 3. Credit Risk Management 4. Budget and Demand Forecasting 5. Inflation Forecasting for Financial Planning 6. Managing Customer Loyalty Using Time Series Data 7. Transforming Time Series – Market Basket and Clustering 8. Other Books You May Enjoy

The importance of time series

What importance, if any, does time series have and how will it be relevant in the future? These are just a couple of fundamental questions that any user should find answers to before delving further into the subject. Let's try to answer this by posing a question. Have you heard the terms big data, artificial intelligence (AI), and machine learning (ML)?

These three terms make learning time series analysis relevant. Big data is primarily about a large amount of data that may be analyzed computationally to reveal patterns, trends, and associations, especially relating to human behavior and interaction. AI is a kind of technology that is being developed by data scientists, computational experts, and others to enable processes to become more intelligent, while ML is an enabler that is helping to implement AI. All three of these terms are interlinked with the data they use, and a lot of this data is time series in its nature. This could be either financial transaction data, the behavior pattern of individuals during various parts of the day, or related to life events that we might experience. An effective mechanism that enables us to capture the data, store it, analyze it, and then build algorithms to predict transactions, behavior (and life events, in this instance) will depend on how big data is utilized and how AI and MI are leveraged.

A common perception in the industry is that time series data is used for forecasting only. In practice, time series data is used for:

  • Pattern recognition
  • Forecasting
  • Benchmarking
  • Evaluating the influence of a single factor on the time series
  • Quality control

For example, a retailer may identify a pattern in clothing sales every time it gets a celebrity endorsement, or an analyst may decide to use car sales volume data from 2012 to 2017 to set a selling benchmark in units. An analyst might also build a model to quantify the effect of Lehman's crash at the height of the 2008 financial crisis in pushing up the price of gold. Variance in the success of treatments across time periods can also be used to highlight a problem, the tracking of which may enable a hospital to take remedial measures. These are just some of the examples that showcase how time series analysis isn't limited to just forecasting. In this chapter, we will review how the financial industry and others use forecasting, discuss what a good and a bad forecast is, and hope to understand the characteristics of time series data and its associated problems.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime