We started this chapter by discussing advanced data processing techniques such as resampling, group-by, and moving window computations to obtain aggregate statistics from a time series. Next, we described stationary time series and discussed statistical tests of hypothesis such as Ljung-Box test and Augmented Dickey Fuller test to verify stationarity of a time series. Stationarizing non-stationary time series is important for time series forecasting. Therefore, we discussed two different approaches of stationarizing time series.
Firstly, the method of differencing, which covers first, second, and seasonal differencing, has been described for stationarizing a non-stationary time series. Secondly, time series decomposition using the statsmodels.tsa API for additive and multiplicative models has been discussed.
In the next chapter, we delve deeper in techniques of exponential...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand