Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Practical Predictive Analytics

You're reading from   Practical Predictive Analytics Analyse current and historical data to predict future trends using R, Spark, and more

Arrow left icon
Product type Paperback
Published in Jun 2017
Publisher Packt
ISBN-13 9781785886188
Length 576 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ralph Winters Ralph Winters
Author Profile Icon Ralph Winters
Ralph Winters
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Predictive Analytics FREE CHAPTER 2. The Modeling Process 3. Inputting and Exploring Data 4. Introduction to Regression Algorithms 5. Introduction to Decision Trees, Clustering, and SVM 6. Using Survival Analysis to Predict and Analyze Customer Churn 7. Using Market Basket Analysis as a Recommender Engine 8. Exploring Health Care Enrollment Data as a Time Series 9. Introduction to Spark Using R 10. Exploring Large Datasets Using Spark 11. Spark Machine Learning - Regression and Cluster Models 12. Spark Models – Rule-Based Learning

Skills and roles that are important in Predictive Analytics

So what skills do you need to be successful in predictive analytics? I believe that there are three basic skills that are needed:

  • Algorithmic/statistical/programming skills: These are the actual technical skills needed to implement a technical solution to a problem. I bundle these all together since these skills are typically used in tandem. Will it be a purely statistical solution, or will there need to be a bit of programming thrown in to customize an algorithm, and clean the data? There are always multiple ways of doing the same task and it will be up to you, the predictive modeler, to determine how it is to be done.
  • Business skills: These are the skills needed for communicating thoughts and ideas among groups of the interested parties. Business and data analysts who have worked in certain industries for long periods of time, and know their business very well, are increasingly being called upon to participate in predictive analytics projects. Data science is becoming a team sport and most projects include working with others in the organization, summarizing findings, and having good presentation and documentation skills are important. You will often hear the term domain knowledge associated with this. Domain knowledge is important since it allows you to apply your particular analytics skills to the particular analytic problems of whatever business you are (or wish to) work within. Everyone business has its own nuances when it comes to solving analytic problems. If you do not have the time or inclination to learn all about the inner workings of the problem at hand yourself, partner with someone who does. That will be the start of a great team!
  • Data storage/Extract Transform and Load (ETL) skills: This can refer to specialized knowledge regarding extracting data, and storing it in a relational or non-relational NoSQL data store. Historically, these tasks were handled exclusively within a data warehouse. But now that the age of big data is upon us, specialists have emerged who understand the intricacies of data storage, and the best way to organize it.

Related job skills and terms

Along with the term predictive analytics, here are some terms that are very much related:

  • Predictive modeling: This specifically means using a mathematical/statistical model to predict the likelihood of a dependent or target variable. You may still be able to predict; however, if there is no underlying model, it is not a predictive model.
  • Artificial intelligence (AI): A broader term for how machines are able to rationalize and solve problems. AI's early days were rooted in neural networks.
  • Machine learning: A subset of AI. Specifically deals with how a machine learns automatically from data, usually to try to replicate human decision-making or to best it. At this point, everyone knows about Watson, who beat two human opponents in Jeopardy.
  • Data science: Data science encompasses predictive analytics but also adds algorithmic development via coding, and good presentation skills via visualization.
  • Data engineering: Data engineering concentrates on data extraction and data preparation processes, which allow raw data to be transformed into a form suitable for analytics. A knowledge of system architecture is important. The data engineer will typically produce the data to be used by the predictive analysts (or data scientists).
  • Data analyst/business analyst/domain expert: This is an umbrella term for someone who is well versed in the way the business at hand works, and is an invaluable person to learn from in terms of what may have meaning, and what may not.
  • Statistics: The classical form of inference, typically done via hypothesis testing. Statistics also forms the basis for the probability distributions used in machine learning, and is closely tied with predictive analytics and data science.
You have been reading a chapter from
Practical Predictive Analytics
Published in: Jun 2017
Publisher: Packt
ISBN-13: 9781785886188
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime