Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Machine Learning with R

You're reading from   Practical Machine Learning with R Define, build, and evaluate machine learning models for real-world applications

Arrow left icon
Product type Paperback
Published in Aug 2019
Publisher Packt
ISBN-13 9781838550134
Length 416 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Brindha Priyadarshini Jeyaraman Brindha Priyadarshini Jeyaraman
Author Profile Icon Brindha Priyadarshini Jeyaraman
Brindha Priyadarshini Jeyaraman
Ludvig Renbo Olsen Ludvig Renbo Olsen
Author Profile Icon Ludvig Renbo Olsen
Ludvig Renbo Olsen
Monicah Wambugu Monicah Wambugu
Author Profile Icon Monicah Wambugu
Monicah Wambugu
Arrow right icon
View More author details
Toc

Table of Contents (8) Chapters Close

About the Book 1. An Introduction to Machine Learning FREE CHAPTER 2. Data Cleaning and Pre-processing 3. Feature Engineering 4. Introduction to neuralnet and Evaluation Methods 5. Linear and Logistic Regression Models 6. Unsupervised Learning 1. Appendix

Introduction

In this chapter, we will look at the implementation of unsupervised learning. We will explore different ways of clustering; namely, bottom-up (or agglomerative) and top-down (or divisive). We will also look at the distinction between monothetic and polythetic hierarchical clustering and delve deeper into the implementation of k-means, a popular clustering technique.

Before we go into the details of the chapter, let's take a brief look at an overview of machine learning. Machine learning, in general, can be divided into three distinct groups; namely, reinforcement learning, supervised learning, and unsupervised learning, as shown in Figure 6.1. There is also one more category, semi-supervised learning, which falls between supervised learning and unsupervised learning. Most widely used learning techniques are supervised and unsupervised learning.

Figure 6.1: Types of machine learning

Reinforcement learning is a category of machine learning that focuses on training...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime