Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
NumPy Cookbook

You're reading from   NumPy Cookbook If you're a Python developer with basic NumPy skills, the 70+ recipes in this brilliant cookbook will boost your skills in no time. Learn to raise productivity levels and code faster and cleaner with the open source mathematical library.

Arrow left icon
Product type Paperback
Published in Oct 2012
Publisher Packt
ISBN-13 9781849518925
Length 226 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Table of Contents (17) Chapters Close

NumPy Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Winding Along with IPython 2. Advanced Indexing and Array Concepts FREE CHAPTER 3. Get to Grips with Commonly Used Functions 4. Connecting NumPy with the Rest of the World 5. Audio and Image Processing 6. Special Arrays and Universal Functions 7. Profiling and Debugging 8. Quality Assurance 9. Speed Up Code with Cython 10. Fun with Scikits Index

Combining images


In this recipe, we will combine the famous Mandelbrot fractal (for more information on Madelbrot set visit http://en.wikipedia.org/wiki/Mandelbrot_set) and the image of Lena. These types of fractals are defined by a recursive formula, where you calculate the next complex number in a series by multiplying the current complex number you have, by itself and adding a constant to it.

Getting ready

Install SciPy, if necessary. The See Also section of this recipe, has a reference to the related recipe.

How to do it...

We will start by initializing the arrays, followed by generating and plotting the fractal, and finally, combining the fractal with the Lena image.

  1. Initialize the arrays.

    We will initialize x, y, and z arrays corresponding to the pixels in the image area with the meshgrid, zeros, and linspace functions:

    x, y = numpy.meshgrid(numpy.linspace(x_min, x_max, SIZE),
        numpy.linspace(y_min, y_max, SIZE))
    c = x + 1j * y
    z = c.copy()
    fractal = numpy.zeros(z.shape, dtype=numpy.uint8...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime