Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Scientific Computing with R

You're reading from   Mastering Scientific Computing with R Employ professional quantitative methods to answer scientific questions with a powerful open source data analysis environment

Arrow left icon
Product type Paperback
Published in Jan 2015
Publisher
ISBN-13 9781783555253
Length 432 pages
Edition 1st Edition
Languages
Arrow right icon
Toc

Table of Contents (12) Chapters Close

Preface 1. Programming with R 2. Statistical Methods with R FREE CHAPTER 3. Linear Models 4. Nonlinear Methods 5. Linear Algebra 6. Principal Component Analysis and the Common Factor Model 7. Structural Equation Modeling and Confirmatory Factor Analysis 8. Simulations 9. Optimization 10. Advanced Data Management Index

Fitting distributions

Now that we have seen how to plot and gain statistical information from probability distributions, we will show you how to use R to fit your data to theoretical distributions. There are several methods you can use to test whether your sample distribution fits a theoretical distribution. For example, you may want to see if your sample distribution fits a normal distribution using a Quantile-Quantile plot (Q-Q plot). In R, you can use the qqnorm() function to create a Q-Q plot to evaluate the data. R also has a more generic version of this function called qqplot() to create Q-Q plots for any theoretical distribution. To illustrate the use of these functions, let's create a Q-Q plot to test whether the gene expression values of probeA follow a normal or gamma distribution.

First, let's set the plot settings to display two figures in the same layout:

> par(mfrow=c(1,2))

Use qqnorm() to fit the data to a normal distribution:

qqnorm(probeA)

Add the theoretical line...

You have been reading a chapter from
Mastering Scientific Computing with R
Published in: Jan 2015
Publisher:
ISBN-13: 9781783555253
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image