Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Python Networking

You're reading from   Mastering Python Networking Your one-stop solution to using Python for network automation, programmability, and DevOps

Arrow left icon
Product type Paperback
Published in Jan 2020
Publisher Packt
ISBN-13 9781839214677
Length 576 pages
Edition 3rd Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Eric Chou Eric Chou
Author Profile Icon Eric Chou
Eric Chou
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Review of TCP/IP Protocol Suite and Python 2. Low-Level Network Device Interactions FREE CHAPTER 3. APIs and Intent-Driven Networking 4. The Python Automation Framework – Ansible Basics 5. The Python Automation Framework – Beyond Basics 6. Network Security with Python 7. Network Monitoring with Python – Part 1 8. Network Monitoring with Python – Part 2 9. Building Network Web Services with Python 10. AWS Cloud Networking 11. Azure Cloud Networking 12. Network Data Analysis with Elastic Stack 13. Working with Git 14. Continuous Integration with Jenkins 15. Test-Driven Development for Networks 16. Other Books You May Enjoy
17. Index

Flow-based monitoring

As mentioned in the chapter introduction, besides polling technology, such as SNMP, we can also use a push strategy, which allows the device to push network information toward the management station. NetFlow and its closely associated cousins, IPFIX and sFlow, are examples of such information pushed from the direction of the network device toward the management station. We can make the argument that the push method is more sustainable since the network device is inherently in charge of allocating the necessary resources to push the information. If the device CPU is busy, for example, it can choose to skip the flow export process in favor of a more critical task such as routing packets.

A flow, as defined by IETF (https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm), is a sequence of packets moving from an application sending something to the application receiving it. If we refer back to the OSI model, a flow is what constitutes a single...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image