Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Geospatial Analysis with Python

You're reading from   Mastering Geospatial Analysis with Python Explore GIS processing and learn to work with GeoDjango, CARTOframes and MapboxGL-Jupyter

Arrow left icon
Product type Paperback
Published in Apr 2018
Publisher Packt
ISBN-13 9781788293334
Length 440 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Silas Toms Silas Toms
Author Profile Icon Silas Toms
Silas Toms
Paul Crickard Paul Crickard
Author Profile Icon Paul Crickard
Paul Crickard
Eric van Rees Eric van Rees
Author Profile Icon Eric van Rees
Eric van Rees
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Package Installation and Management FREE CHAPTER 2. Introduction to Geospatial Code Libraries 3. Introduction to Geospatial Databases 4. Data Types, Storage, and Conversion 5. Vector Data Analysis 6. Raster Data Processing 7. Geoprocessing with Geodatabases 8. Automating QGIS Analysis 9. ArcGIS API for Python and ArcGIS Online 10. Geoprocessing with a GPU Database 11. Flask and GeoAlchemy2 12. GeoDjango 13. Geospatial REST API 14. Cloud Geodatabase Analysis and Visualization 15. Automating Cloud Cartography 16. Python Geoprocessing with Hadoop 17. Other Books You May Enjoy

Introducing Anaconda

Anaconda is a freemium open source distribution of the Python programming language for large-scale data processing, predictive analytics, and scientific computing, that aims to simplify package management and deployment. It is also the world's most popular Python data science platform, with over 4.5 million users and 1,000 data science packages. It is not to be confused with conda, a package manager that is installed with Anaconda.

For this book, we recommend installing and using Anaconda as it provides you everything you need—Python itself, Python libraries, the tools to manage these libraries, a Python environment manager, and the Jupyter Notebook application to write, edit, and run your code. You can also choose to use an alternative to Anaconda or install Python through www.python.org/downloads and use any IDE of your choice combined with a package manager such as pip (covered as we proceed further). We recommend using Python version 3.6.

Installing Python using Anaconda

A free download of the latest version of Anaconda, available for Windows, macOS, and Linux is available at the homepage of Continuum Analytics. At the time of writing, the latest version is Anaconda 5.0.1, released in October 2017 and available in 32 and 64-bit versions from https://www.continuum.io/downloads. This page also offers extensive download instructions for each operating system, a 30-minute tutorial that explains how to use Anaconda, a cheat sheet on how to get started, and an FAQ section. There's also a slimmed-down version of Anaconda called Miniconda that only installs Python and the conda package manager, leaving out the 1000+ software packages that come with the standard installation of Anaconda: https://conda.io/miniconda.html. If you decide to use this, make sure you download the Python 3.6 version.

Anaconda will install Python 3.6.2 as the default Python version on your machine. The Python version that is used in all chapters of this book is Python 3.6, so you're good with any version that starts with 3.6 or higher. With Anaconda, you get more than 1,000 Python packages, as well as a number of applications, such as Jupyter Notebook, and a variety of Python consoles and IDEs.

Please note that you are not forced to always use Python version 3.6 after installing it—using Anaconda Navigator (a GUI for managing local environments and installing packages), you can also choose to use Python 3.5 or 2.7 in a virtual environment. This gives you more flexibility in switching between different Python versions for various projects.

To begin the installation, download the 32-or 64-bit Anaconda installer, depending on your system capabilities. Open the installation and follow the setup guide to install Anaconda on your local system.

You have been reading a chapter from
Mastering Geospatial Analysis with Python
Published in: Apr 2018
Publisher: Packt
ISBN-13: 9781788293334
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image