Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Apache Spark 2.x

You're reading from   Mastering Apache Spark 2.x Advanced techniques in complex Big Data processing, streaming analytics and machine learning

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781786462749
Length 354 pages
Edition 2nd Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Romeo Kienzler Romeo Kienzler
Author Profile Icon Romeo Kienzler
Romeo Kienzler
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. A First Taste and What’s New in Apache Spark V2 FREE CHAPTER 2. Apache Spark SQL 3. The Catalyst Optimizer 4. Project Tungsten 5. Apache Spark Streaming 6. Structured Streaming 7. Apache Spark MLlib 8. Apache SparkML 9. Apache SystemML 10. Deep Learning on Apache Spark with DeepLearning4j and H2O 11. Apache Spark GraphX 12. Apache Spark GraphFrames 13. Apache Spark with Jupyter Notebooks on IBM DataScience Experience 14. Apache Spark on Kubernetes

Increased performance with good old friends


As in Apache SparkSQL for batch processing and, as Apache Spark structured streaming is part of Apache SparkSQL, the Planner (Catalyst) creates incremental execution plans as well for mini batches. This means that the whole streaming model is based on batches. This is the reason why a unified API for streams and batch processing could be achieved. The price we pay is that Apache Spark streaming sometimes has drawbacks when it comes to very low latency requirements (sub-second, in the range of tens of ms). As the name Structured Streaming and the usage of DataFrames and Datasets implies, we are also benefiting from performance improvements due to project Tungsten, which has been introduced in a previous chapter. To the Tungsten engine itself, a mini batch doesn't look considerably different from an ordinary batch. Only Catalyst is aware of the incremental nature of streams. Therefore, as of Apache Spark V2.2, the following operations are not (yet...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image