Summary
5G standardization is being driven to meet the requirements of IMT-2020. We mentioned the three pillars several times: eMBB, URLLC, and mMTC. The theoretical maximum data rate for 5G is 20 Gigabits per second, although the mean data rate for the subscriber is in the low hundreds of megabits per second. RAN latency requirements are around sub-1 ms.
3GPP standardization for 5G started with Release 15 and moved on to Release 16. In Release 17, we also see enhancements taking place.
Commercial deployments already started taking place in 2019 and onward into 2020 and 2021.
We also analyzed the main components of the 5G system, including the 5G NR and NG-RAN. In terms of the NG-RAN, there are two main elements: the user equipment and the gNB.
We saw that tracking areas are designed to make paging more efficient by creating subgroups of gNBs across the Radio Access Network.
We discussed the different RAN deployment options available to service providers. At a high level, they are called NSA and SA deployments.
We also analyzed the NR and NG-RAN features, which gives us important knowledge for upcoming chapters. First, we talked about dual connectivity. It can be used to significantly increase a subscriber’s experienced data rate. It is a key technology enabler for 5G. Small cells are closely related to dual connectivity. We talked about how they can be deployed indoors or outdoors. With respect to licensed spectrum, we said it is essential to unlock an additional licensed spectrum for the service provider so that they can operate the network at those high data rates.
We also talked about the new air interface technologies. We talked specifically about CP-OFDM and the use of 256QAM. Beam forming antennas associated with the use of Massive MIMO will be critical and with that, we also get beam steering. Then, finally, we discussed Cloud RAN. We talked about how it can provide efficiency and potential cost savings to the service provider if they choose to deploy it.
In the next chapter, we will go over the end-to-end network architecture of 5G. We will learn about some concepts and the high-level components of access networks, packet core networks, and transport networks. We will also understand how the quality of service is managed in 5G networks.