Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning for the Web

You're reading from   Machine Learning for the Web Gaining insight and intelligence from the internet with Python

Arrow left icon
Product type Paperback
Published in Jul 2016
Publisher Packt
ISBN-13 9781785886607
Length 298 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Andrea Isoni Andrea Isoni
Author Profile Icon Andrea Isoni
Andrea Isoni
Steve Essinger Steve Essinger
Author Profile Icon Steve Essinger
Steve Essinger
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction to Practical Machine Learning Using Python FREE CHAPTER 2. Unsupervised Machine Learning 3. Supervised Machine Learning 4. Web Mining Techniques 5. Recommendation Systems 6. Getting Started with Django 7. Movie Recommendation System Web Application 8. Sentiment Analyser Application for Movie Reviews Index

Association rules for learning recommendation system


Although this method is not used often in many commercial recommendation systems, association rules learning is certainly a method worth knowing about because of historical data reasons, and it can be employed to solve a wide range of problems in real-world examples. The main concept of this method is to find relationships among items based on some statistical measure of the occurrences of the items in the database of transactions T (for example, a transaction could be the movies seen by a user i or the products bought by i). More formally, a rule could be {item1,item2} => {item3}, that is, a set of items ({item1,item2}) implies the presence of another set ({item3}). Two definitions are used to characterize each X=>Y rule:

  • Support: Given a set of items X, the support supp(X) is the portion of transactions that contains the set X over the total transactions.

  • Confidence: It is the fraction of transactions that contains the set X that...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image