Zipline – scalable backtesting by Quantopian
The backtesting engine Zipline powers Quantopian's online research, backtesting, and live (paper) trading platform. As a hedge fund, Quantopian aims to identify robust algorithms that outperform, subject to its risk management criteria. To this end, they use competitions to select the best strategies and allocate capital to share profits with the winners.
Quantopian first released Zipline in 2012 as version 0.5, and the latest version, 1.3, dates from July 2018. Zipline works well with its sister libraries Alphalens, pyfolio, and empyrical that we introduced in Chapter 4, Financial Feature Engineering – How to Research Alpha Factors and Chapter 5, Portfolio Optimization and Performance Evaluation, and integrates well with NumPy, pandas, and numeric libraries, but may not always support the latest version.
Zipline is designed to operate at the scale of thousands of securities, and each can be associated with a...