Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning PySpark

You're reading from   Learning PySpark Build data-intensive applications locally and deploy at scale using the combined powers of Python and Spark 2.0

Arrow left icon
Product type Paperback
Published in Feb 2017
Publisher Packt
ISBN-13 9781786463708
Length 274 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Denny Lee Denny Lee
Author Profile Icon Denny Lee
Denny Lee
Tomasz Drabas Tomasz Drabas
Author Profile Icon Tomasz Drabas
Tomasz Drabas
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Understanding Spark FREE CHAPTER 2. Resilient Distributed Datasets 3. DataFrames 4. Prepare Data for Modeling 5. Introducing MLlib 6. Introducing the ML Package 7. GraphFrames 8. TensorFrames 9. Polyglot Persistence with Blaze 10. Structured Streaming 11. Packaging Spark Applications Index

Preface

It is estimated that in 2013 the whole world produced around 4.4 zettabytes of data; that is, 4.4 billion terabytes! By 2020, we (as the human race) are expected to produce ten times that. With data getting larger literally by the second, and given the growing appetite for making sense out of it, in 2004 Google employees Jeffrey Dean and Sanjay Ghemawat published the seminal paper MapReduce: Simplified Data Processing on Large Clusters. Since then, technologies leveraging the concept started growing very quickly with Apache Hadoop initially being the most popular. It ultimately created a Hadoop ecosystem that included abstraction layers such as Pig, Hive, and Mahout – all leveraging this simple concept of map and reduce.

However, even though capable of chewing through petabytes of data daily, MapReduce is a fairly restricted programming framework. Also, most of the tasks require reading and writing to disk. Seeing these drawbacks, in 2009 Matei Zaharia started working on Spark as part of his PhD. Spark was first released in 2012. Even though Spark is based on the same MapReduce concept, its advanced ways of dealing with data and organizing tasks make it 100x faster than Hadoop (for in-memory computations).

In this book, we will guide you through the latest incarnation of Apache Spark using Python. We will show you how to read structured and unstructured data, how to use some fundamental data types available in PySpark, build machine learning models, operate on graphs, read streaming data, and deploy your models in the cloud. Each chapter will tackle different problem, and by the end of the book we hope you will be knowledgeable enough to solve other problems we did not have space to cover here.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime